Hearing and Hair Cells
by John S. Oghalai, M.D.
Dept. of Otolaryngology & Communicative Sciences
Baylor College of Medicine
Hearing allows us to be concious of what is going on around us, without
actually paying attention to it. It is always working, day and night,
to warn us of danger. Most importantly, hearing allows communication.
The basic principles of how hearing works is fairly simple to understand.
Essentially, sound waves are detected by the ear, converted into neural
signals, and then sent to the brain. The purpose of this article is to
briefly describe this process.
Fig.1 
The ear has three divisions: the external ear, the middle ear, and the
inner ear. The external ear collects sound waves and funnels them down
the ear canal, where they vibrate the eardrum. Within the middle ear, the
eardrum is connected to the middle ear bones. These are the smallest bones
in the body, and they mechanically carry the sound waves to the inner
ear. The eustachian tube connects the middle ear to the upper part of
the throat, equalizing the air pressure within the middle ear to that of the surrounding environment. The inner ear contains the cochlea. This is the organ that converts sound waves into neural signals. These signals are passed to the brain via the auditory nerve.
Fig.2
Coiling around the inside of the cochlea, the organ of Corti contains
the cells responsible for hearing, the hair cells. There are two types
of hair cells: inner hair cells and outer hair cells. These cells have
stereocilia or "hairs" that stick out. The bottom of these cells are attached
to the basilar membrane, and the stereocilia are in contact with the tectoral membrane. Inside the cochlea, sound waves cause the basilar membrane to
vibrate up and down. This creates a shearing force between the basilar membrane and the tectoral membrane, causing the hair cell stereocilia
to bend back and forth. This leads to internal changes within the hair cells that creates electrical signals. Auditory nerve fibers rest below the
hair cells and pass these signals on to the brain. So, the bending of the stereocilia is how hair cells sense sounds.
Fig.3
Outer hair cells have a special function within the cochlea. They are
shaped cylindrically, like a can, and have stereocilia at the top of the cell, and a nucleus at the bottom. When the stereocilia are bent in response
to a sound wave, an electromotile response occurs. This means the cell changes in length. So, with every sound wave, the cell shortens and
then elongates. This pushes against the tectoral membrane, selectively amplifying the vibration of the basilar membrane. This allows us to hear
very quiet sounds. The electromotile response of an outer hair cell is
shown in the movie:
When you are exposed to loud music or noise, it is your hair cells which
are damaged. Hearing loss occurs because loud sounds are really just large
pressure waves (like when you stand next to a subwoofer and can "feel"
the bass). These large pressure waves bend the stereocilia too far, sometimes to the point where they are damaged. This kills the hair cell. Since cochlear
hair cells can not grow back, this manifests as a permanent hearing loss.
This is just a simple explanation of very complex processes which occur
during the process of hearing. For more information, I would recommend
several different Web sites, including: http://www.bcm.tmc.edu/oto/, http://www.nih.gov/nidcd/, and http://www.neurophys.wisc.edu/h&b/auditory/
animation/animationmain.html or email me at:joghalai@bcm.tmc.edu
About The Author
John grew up in Madison, Wisconsin, and began playing the guitar at age
16. He picked up simple rock techniques from friends, and went on to study
jazz guitar under Roger Brotherhood and Joan Wildman. He played in several rock and jazz bands during college and medical school, including a post-modern
rock band called This The Hour. After graduating from medical school at
the University of Wisconsin - Madison, he moved to Texas for specialty
training in 1994. Currently, he is 28 years old and a resident in Otolaryngology
- Head and Neck Surgery (i.e. Ear, Nose, and Throat) at Baylor College of Medicine in Houston, Texas. He is involved in basic
science inner ear hair cell research with Dr. William Brownell, where
he is studying cochlear biophysics and electrophysiology. Hopfully, this
research will lead to better ways to help patients with hearing and balance
disorders.
Acknowledgements:
Project supported by research grants from the Deafness Research Foundation
(to John S. Oghalai) and the National Institutes of Health DC00354, DC02775
(to William E. Brownell) from NIDCD. Illustratrations by Carl Clingman.
|